## Chapter 3

## Stoichiometry


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Atomic Masses

In this instrument, atoms or molecules are passed into a beam of high speed electrons. The high speed electrons knock electrons off the atoms or molecu being analyzed and change them to positive ions.

- The amount of path deflection for each depends on its mass - the most massive ions are deflected the smallest amount - which causes the ions to separate.
$\underset{\substack{\text { so mporize } \\ \text { semple }}}{\substack{\text { Electron } \\ \text { beam }}}$
$\qquad$
$\qquad$


## Atomic Masses

> Most elements occur in nature as mixture of isotopes; thus atomic masses are usually average values.
$>$ Natural carbon is composed of $98.89 \%{ }^{12} \mathrm{C}$ atoms and $1.11 \%{ }^{13} \mathrm{C}$ atoms The amount of ${ }^{14} \mathrm{C}$ is negligibly small.
$>$ The relative intensities of the signals recorded when natural neon is injected into a mass spectrometer.



Mass Spectrun of Neon
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Atomic Masses

The element magnesium $(\mathrm{Mg})$ has three stable isotopes with the following masses and abundances. Calculate the atomic mass of magnesium

| Isotope |  | Mass (amu) |
| :--- | :--- | :--- |
| ${ }^{24} \mathrm{Mg}$ | 23.9850 | $78.99 \%$ |
| ${ }^{25} \mathrm{Mg}$ | 24.9858 | $10.00 \%$ |
| ${ }^{26} \mathrm{Mg}$ | 25.9826 | $11.01 \%$ |


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## The Mole

> The mole (abbreviated mol) is the number equal to the number of carbon atoms in exactly 12 grams of ${ }^{12} \mathrm{C}$. $\qquad$
$>$ Avogadro's number is: $6.022137 \times 10^{23}\left(6.022 \times 10^{23}\right)$
$>$ One mole of something consists of $6.022 \times 10^{23}$ units of that substance.
$>1$ mol can be described as:

- $6.022 \times 10^{23}$ atoms so we use "Atomic mass of an element
- $6.022 \times 10^{23}$ molecules so we use "Molecular weight (M.w) of molecule"
$\qquad$
$\qquad$
$\qquad$


## The Mole

$>$ Example 3.2: Find the mass of 6 atoms of Americium. Note that one americium atom has a mass of 243 amu
Note that this atom does not occur naturally, It could be made in a device called particle accelerator

We know that each 243 grams of this atom contains $6.022 \times 10^{23}$ atoms, so 6 atoms must weigh:
$6 \times 243 / 6.022 \times 1023=2.42 \times 10^{-21} \mathrm{~g}$
Note: n moles $\rightarrow \mathrm{N}_{\mathrm{A}}$ molecules
$\qquad$
$\qquad$
$\qquad$
$\qquad$
*Do example 3.3 (H.W)
$\qquad$
$\qquad$

## Molar Mass

$>$ The mass, in grams, of 1 mol of a substance is termed as "Molar mass"
$>$ The term molecular weight has been used to describe the mass of 1 mole of a substance. Thus terms molar mass and molecular weight mean exactly the same thing: the mass in grams of 1 mole of a compound.
$>$ Some substances exist as a collection of ions rather than as separate molecules. For example in some texts the term formula weight is used for ionic compounds.
$\qquad$
$\qquad$
$\qquad$
 $\qquad$
$\qquad$
$\qquad$
$\qquad$

## Molar Mass


$\qquad$
Ex 3.4: How many molecules of isopentyl acetate $\left(\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}\right)$ are present in $1 \mu \mathrm{~g}$ ? The is the amount of isopentyl acetate released by
$\qquad$ a bee when it stings. How many atoms of carbon are present? $\qquad$

$$
\mathrm{x} \text { molecules } \longrightarrow 1 \times 10^{-6} \mathrm{~g}
$$

$\qquad$
$6.02 \times 10^{23}$ molecules $\longrightarrow 130$
$\qquad$
1 molecule $\longrightarrow 7$ atoms C $\qquad$
$5 \times 10^{15}$ molecules $\longrightarrow \mathrm{X}$ atoms C $\qquad$

## Molar Mass

$\qquad$

Example 3.4:
Isopentyl acetate $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$ of mass $1 \times 10^{-6} \mathrm{~g}$ :
Mass of 1 mol of $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}=7 \mathrm{~mol} \mathrm{C} \times 12.011+14 \mathrm{~mol} \mathrm{H} \times 1.0079+$
$2 \mathrm{~mol} \mathrm{O} \times 15.999=130.186 \mathrm{~g}$
In $6.022 \times 10^{23}$ molecules $(1 \mathrm{~mol})$ we have 130.186 g of the compound, thus $\times 10^{-6} \mathrm{~g}$, we have:
$\qquad$

$$
\frac{1 \times 10^{-6} \times 6.022 \times 10^{23}}{130.186}=5 \times 10^{15} \text { molecules }
$$

$\qquad$

- In 1 molecule of the compound we have 7 molecules of Carbon, so in $5 \times 10^{1}$ molecules we have of the compound, we have:
$\frac{5 \times 10^{15} \times 7}{1}=4 \times 10^{16}$ atoms of carbon
$\qquad$ $\square$ $\qquad$

Percent Composition of Compounds $\qquad$
Consider ethanol $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

- Mass of $\mathrm{C}=2 \mathrm{~mol} \times 12.011 \mathrm{~g} / \mathrm{mol}=24.022$ grams
- Mass of $\mathrm{H}=6 \mathrm{~mol} \times 1.008 \mathrm{~g} / \mathrm{mol}=6.048$ grams
- Mass of $\mathrm{O}=1 \mathrm{~mol} \times 15.999 \mathrm{~g} / \mathrm{mol}=15.999$ grams
- Mass of 1 mol of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=46.069 \mathrm{~g}$

The mass percent of carbon in ethanol can be computed by comparing the mass of carbon in 1 mole of ethanol:

Mass percent of $\mathrm{C}=\frac{\text { mas of } 1 \mathrm{~mol} \mathrm{C}}{\text { M.w of compound }} \times 100 \%$

- $\%$ of $\mathrm{C}=\times 100 \%=52.144 \%$
- $\%$ of $\mathrm{H}=\times 100 \%=13.13 \%$
- $\%$ of $\mathrm{O}=\times 100 \%=34.728 \%$
*Do example 3.5 (H.W)
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Formula Determination

The formula is determined by taking a weighed sample of the compound and either decomposing it into its component elements or reacting it with oxygen to produce substances such as $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ \& $N_{2}$ which are then collected and weighed.

The results of such analyses provide the mass of each type of element in the compound, which can be used to determine the mass percent of each element present.

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Formula Determination

$\qquad$

Empirical formula is the simplest whole-number ratio of the various types of atoms in a compound

Molecular formula is the exact formula of a molecule and can be determined if we also know the molar mass
E.g. A compound with the empirical formula $\mathrm{CH}_{5} \mathrm{~N}$ could have a molecular formula of $\mathrm{CH}_{5} \mathrm{~N}, \mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}$ or $\mathrm{C}_{3} \mathrm{H}_{15} \mathrm{~N}_{3}$ or $\mathrm{C}_{4} \mathrm{H}_{20} \mathrm{~N}_{4}$..

- Any molecule that can be represented as $\left(\mathrm{CH}_{5} \mathrm{~N}\right)_{x}$ where $x$ is an integer has the empirical formula $\mathrm{CH}_{5} \mathrm{~N}$

Molecular formula $=(\text { empirical formula })_{x}$ where $x$ is an integer
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Determining the Formula of a Compound

$\qquad$
uppose a substance has been prepared that is composed of carbon, hydrogen and nitrogen. $\qquad$
When 0.1156 gram of this pound is reacted with oxygen, 0.1638 gram of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ and 0.1676 gram of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ are collected.

Assuming that all of carbon in the compound is converted to $\mathrm{CO}_{2}$, we can determine the mass of carbon originally present in the 0.1156 gram sample.
To do so, we must use the percentage by mass of carbon in $\mathrm{CO}_{2}$. The molar mass of $\mathrm{CO}_{2}$ is $12.011 \mathrm{~g} / \mathrm{mol}+2(15.999 \mathrm{~g} / \mathrm{mol})=44.009 \mathrm{~g} / \mathrm{mol}$.

The fraction of carbon present ( 12.011 grams C per 44.009 grams $\mathrm{CO}_{2}$ ) can now be used to determine mass of carbon in 0.1638 gram of $\mathrm{CO}_{2}$ :
$0.1638 \mathrm{~g} \mathrm{CO}_{2} \times 12.011 / 44.009 \mathrm{~g} \mathrm{CO}_{2}=0.04470 \mathrm{~g} \mathrm{C}$, which represents $38.67 \%$ by mass of the compound.

## Determining the Formula of a Compound

```
>Similarly for H:
0.1676 g H2O O 2.016 g H/18.015 g H2O = 0.01876 g H, which
    represent
16.23 % by mass of the compound
Since the unknown compound contains only C, H and N:
    % N = 100-(38.67%+16.23 %)=45.10 % N
    > To determine the formula of the compound:
```



```
    g N:
    n(C)=38.67/12.011=3.220 mol C
    n (H)=16.23/1.008=16.10 mol H
    n(N)=45.10 / 14.007 = 3.220 mol N
```


## Determining the Formula of a Compound

Find the smallest whole-number ratio of atoms:
C. $\frac{3.220}{3.220}$

C: $\frac{.220}{3.220}=1$
H: $\frac{16.10}{3.220}=5$
3.220
$\mathrm{N}: 3.220=1$
$>$ The formula is thus $\mathrm{CH}_{5} \mathrm{~N}$
$>$ This formula is called the empirical formula.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Determining the Formula of a Compound

$\qquad$
$>$ Example 3.6: Compound with $43.64 \%$ phosphorus and $56.36 \%$ oxygen by mass (Molar Mass $=283.88 \mathrm{~g}$ ). $\qquad$
To find the empirical and molecular formulas:

- In 100 g of the compound, we find: $\mathrm{n}=$ mass / M.w
$43.64 / 31=1.4 \mathrm{~mol} \mathrm{P} \quad$ and $\quad 56.36 / 16=3.5 \mathrm{~mol} \mathrm{O}$
Then: $1.4 / 1.4=\underline{\mathbf{1}}$ for P and $3.5 / 1.4=\underline{\mathbf{2} .5}$ for O
$>$ Multiply both by 2 : we get $\mathrm{P}_{2} \mathrm{O}_{5}$ which is the "empirical" formula
M.w $=2 \times 31+16 \times 5=141.9 \mathrm{~g} / \mathrm{mol}$
$\left(\mathrm{P}_{2} \mathrm{O}_{5}\right) \mathrm{x}=283.88 \mathrm{~g} / \mathrm{mol}$ so (141.9). $\mathrm{x}=283.88$, we get $\mathrm{x}=2$ so $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$
Therefore the molecular formula is $\mathrm{P}_{4} \mathrm{O}_{10}$ $\qquad$
*Do example 3.7 (H.W)


## Example 3.6

$\qquad$

$$
\mathrm{P}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}} ; \mathrm{M} . \mathrm{w} .=283.88 \mathrm{~g} / \mathrm{mol}
$$

In 100 g :
P: $43.64 \% ; 43.64 \mathrm{~g} / 31=1.4 / 1.4=1 \quad$ x $2=2$
$\qquad$

O: $56.36 \% ; 56.36 \mathrm{~g} / 16=3.5 / 1.4=2.5 \times 2=5$
$\mathrm{P}_{2} \mathrm{O}_{5}$ is E.F. and M.w. $=141.9 \mathrm{~g} / \mathrm{mol}$
$(141.9) \mathrm{x}=283.88$
$\mathrm{x}=2$ $\qquad$
M.F is $\mathrm{P}_{4} \mathrm{O}_{10}$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Determining the Formula of a Compound

> To Determine the Empirical Formula:
Base the calculation on 100 grams of the compound. Each mass percent will represent the mass in grams of that element present in the compound.

- Determine the number of moles of the each element present in 100 grams of that compound using atomic weights
- Divide each value of the number of moles by the smallest value. If each resulting number is a whole number, they represent the subscripts of the elements in empirical formula.
- If the numbers are not whole numbers, multiply each by an integer so that the results are whole numbers.


## Determining the Formula of a Compound

$\qquad$

- To Determine the Molecular Formula: $\qquad$
- Obtain empirical formula .
- Compute the empirical formula mass
- Calculate the ratio

MOLAR MASS / EMPIRICAL FORMULA MASS

- The integer from the previous step represents the number of empirical formula units in one molecule .
- When the empirical formula subscripts are multiplied by
$\qquad$
$\qquad$
$\qquad$
$\qquad$ this integer, we obtain the molecular formula. $\qquad$


## Chemical Equations

>A chemical change involves reorganization of the atoms .
When the methane $\left(\mathrm{CH}_{4}\right)$ in natural gas combines with oxygen $\left(\mathrm{O}_{2}\right)$ in the air and burns, carbon dioxide $\left(\mathrm{CO}_{2}\right)$ and water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ are formed. The process is represented by a chemical equation with the reactants on the left side of an arrow and products on the right side.

$$
\underset{\text { REACTANTS }}{\mathrm{CH}_{4}}+\underset{\text { PRODUCTS }}{\mathrm{O}_{2}} \rightarrow \underset{\mathrm{CO}_{2}}{\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}}
$$

$>$ Bonds have been broken and new ones have been formed. In a chemical reaction atoms are neither created nor destroyed. All atoms present in the reactants must be accounted for among the products . $\qquad$

## Chemical Equations

$>$ Balancing chemical equation: $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$>$ The chemical equation of a reaction provides 2 important types of information:
$>$ The nature of reactants and products and the relative number of each.
> The equation often includes the physical state of the reactants and products.

| State | Symbol |  |
| :--- | :--- | :--- |
| Solid | (s) |  |
| Liquid | (l) |  |
| Gas | (g) | $(25)$ |
| Dissolved in water (in aqueous solution) | (aq) |  |

$\qquad$

## Chemical Equations

> Example:
$\mathrm{HCl}(\mathrm{aq})+\mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NaCl}(\mathrm{aq})$

## TABLE 3.2

Information Conveyed by the Balanced Equation for the Combustion of Methane

| Reactants | $\longrightarrow$ | Products |
| :--- | :--- | :--- |
| $\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g)$ | $\longrightarrow$ | $\mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ |

1 molecule $\mathrm{CH}_{4}$
+2 molecules $\mathrm{O}_{2}$$\longrightarrow \quad \begin{aligned} & 1 \text { molecule } \mathrm{CO}_{2} \\ & +2 \text { molecules } \mathrm{H}_{2}\end{aligned}$
$\begin{array}{ll}+2 \text { molecules } \mathrm{O}_{2} \\ 1 \text { mol CH } \\ 4 & \text { molecules }\end{array} \quad \begin{aligned} & \text { 2 molecules } \mathrm{H}_{2} \mathrm{O} \\ & \end{aligned}$
$\begin{aligned} & 1 \text { mol CH } \\ & +\end{aligned}$ molecules
$+2 \mathrm{~mol} \mathrm{O}_{2}$ molecules $\quad \longrightarrow \quad \begin{aligned} & 1 \mathrm{~mol} \mathrm{CO}_{2} \text { molecules } \\ & +2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \text { molecules }\end{aligned}$
$6.022 \times 10^{23} \mathrm{CH}_{4}$ molectit
$6.022 \times 10^{23} \mathrm{CO}_{2}$ molecule
$+2\left(6.022 \times 10^{23}, \mathrm{O}_{2}\right.$ molecules $\longrightarrow \quad \begin{array}{l} \\ +2\left(6.022 \times 10^{23}\right) \mathrm{H}_{2} \mathrm{O} \text { molecules }\end{array}$
$16 \mathrm{~g} \mathrm{CH}_{4}+2(32 \mathrm{~g}) \mathrm{O}_{2} \quad \longrightarrow \quad 44 \mathrm{~g} \mathrm{CO}_{2}+2(18 \mathrm{~g}) \mathrm{H}_{2} \mathrm{O}$
80 g reactants $\longrightarrow 80 \mathrm{~g}$ products

## Balancing Chemical Equations

$>$ Atoms are conserved in a chemical reaction.
$>$ The formulas of the compounds must never be changed when balancing a chemical equation.
$>$ In balancing equations, start with the most complicated molecule
> Example:

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$>$ The most complicated molecule here is $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$.

- The balanced equation becomes: $\qquad$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g})--->2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\qquad$


## Balancing Chemical Equations

STEPS : Writing and Balancing the Equation for a Chemical Reaction

- Determine what reaction is occurring. What are the reactants, the products, and the states involved?
- Write the unbalanced equation that summarizes the preceding information.
- Balance the equation by inspection, starting with the most complicated molecule(s) .

Determine what coefficients are necessary to ensure that the same number of each type of atoms appears on both reactants and products sides. Do not change the identities (formulas) of any of the reactants or products
*Do Example 3.8 (H.W)
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Stoichiometric Calculations

## > Amounts of Reactants and Products:

- Coefficients in chemical equations represent number of molecules.
- In the laboratory or chemical plant when a reaction is to be run, the amounts of substances needed cannot be determined by counting molecules directly
$>$ Consider the combustion of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ :
What mass of oxygen $\left(\mathrm{O}_{2}\right)$ and carbon dioxide $\left(\mathrm{CO}_{2}\right)$ will react with 96.1 gram of propane?
$>$ Write the balanced chemical equation for the reaction

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

## Stoichiometric Calculations

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& 96.1 \mathrm{~g} / 44.1 \quad \mathrm{xg} / 5 \times 32 \quad \mathrm{yg} / 3 \times 44 \\
& \text { We get: } \mathrm{x}=349 \mathrm{~g} \mathrm{O}_{2} \text { and } \mathrm{y}=288 \mathrm{~g} \mathrm{CO}_{2}
\end{aligned}
$$

$\qquad$

## Another Method

- Find the number of moles of propene then that of $\mathrm{O}_{2}\left(\mathrm{n}_{\mathrm{O} 2}=\mathrm{m}_{\mathrm{O} 2} /\right.$
$\qquad$
M.w)
- We get : $2.18 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}$
$10.9 \mathrm{~mol} \mathrm{O}_{2}$
6.54 mol CO 2
$\qquad$

Thus the mass of $\mathrm{O}_{2}=10.9 \times 32.0=349 \mathrm{~g} \mathrm{O}_{2}$

- The mass of $\mathrm{CO}_{2}=288 \mathrm{~g} \mathrm{O}_{2}$
$\qquad$


## Stoichiometric Calculations

STEPS : Calculation of Masses of Reactants and Products in Chemical Reactions: $\qquad$

- Balance the equation for the reaction.
- Convert the known masses of substances to moles
- Use the balanced equation to set up the appropriate mole ratios.
- Use the appropriate mole ratios to calculate the number of moles of the desired reactant or product . $\qquad$
- Convert from moles back to grams if required by the problem.
*Do Example 3.9 (H.W)


## Calculations Involving a Limiting Reactant

Stoichiometric quantities: exactly the correct amounts so that all reactants "Run Out " (are used up) at the same time.
$\qquad$
$>$ HABER PROCESS: $\quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

- Assume that $5 \mathrm{~N}_{2}$ molecules and $9 \mathrm{H}_{2}$ molecules are placed in a flask. Is this a stoichiometric mixture of reactants, or will one of them be consumed before the other runs out?

$\qquad$

$\qquad$
$\qquad$

Calculations Involving a Limiting Reactant $\qquad$
$>$ Write the reaction: $\qquad$
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
$5 / 1 \quad 9 / 3$ $\qquad$
$5>3$
excess limiting $\qquad$
Thus, $\mathrm{H}_{2}$ is the limiting reactant and it's consumed before $\mathrm{N}_{2}$.
$>$ In any stiochiometry problem it's essential to determine which reactant is the limiting reactant because it, by definition, limits the amount of product formed.
$>$ Establish a mole ratio between limiting reactant and product.
$\qquad$
$\qquad$
$\qquad$

## Calculations Involving a Limiting Reactant

$>$ Suppose 25.0 kilograms of nitrogen \& 5.00 kilograms of hydrogen are mixed and reacted to form ammonia. What is the mass of ammonia produced when this reaction is run to completion?

$$
\begin{array}{ccc}
\mathrm{N}_{2}(\mathrm{~g}) & +3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow & 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
25 \times 10^{3} \mathrm{~g} & 5 \times 10^{3} \mathrm{~g} & \mathrm{x} \mathrm{~g} \\
\text { Excess } & \text { Limiting } &
\end{array}
$$

Therefore hydrogen is the limiting reactant in a particular situation, and we must use the amount of hydrogen to compute the quantity of ammonia formed:

$$
\text { Mass }\left(\mathrm{NH}_{3}\right)=x=34 \times 5 \times 10^{3} / 3 \times 2=28.0 \mathrm{~kg} \mathrm{NH}_{3}
$$

$\qquad$
Another Method

- Calculate number of moles of $\mathrm{N}_{2}$
- Calculate the number of moles of required $\mathrm{H}_{2}$
- Compare $\qquad$


## Calculations Involving a Limiting Reactant

$\qquad$
$\Rightarrow$ EXAMPLE $3.10: 18.1 \mathrm{~g}$ of ammonia is reacted with 90.4 g of copper(II) oxide. Determine the mass of nitrogen produced.
$\qquad$
$2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{CuO}(\mathrm{s}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{Cu}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}$ $\qquad$
Masses (g): $18.1 / 2 \times 17 \quad 90.4 / 2 \times 79.5 \quad(x) / 14 \times 2$
$0.532>0.379$ $\qquad$
So we can find the mass of $\mathrm{N}_{2}$ :
$\mathrm{x}=10.61 \mathrm{~g} \mathrm{~N}_{2}$
> The amount of a given product formed when the limiting reactant is completely consumed is called the theoretical yield of the product. This maximum amount of nitrogen that can be produced from the quantities of reactants used.


Solving a Stoichiometry Problem Involving Masses of Reactants and Products
>STEPS

- Write and balance equation of the reaction.
- Convert the masses of known substances into moles.
- By comparing the mole ratio required by the balanced equation with the mole ratio of reactants actually present, determine which reactant is limiting
- Using the amount of limiting reactant and the appropriate mole ratios, compute the number of moles of desired product.
- Convert from moles to grams using molar mass
*Do Example 3.11 (H.W)

